Early onset of deafening-induced song deterioration and differential requirements of the pallial-basal ganglia vocal pathway.
نویسندگان
چکیده
Similar to humans, songbirds rely on auditory feedback to maintain the acoustic and sequence structure of adult learned vocalizations. When songbirds are deafened, the learned features of song, such as syllable structure and sequencing, eventually deteriorate. However, the time-course and initial phases of song deterioration have not been well studied, particularly in the most commonly studied songbird, the zebra finch. Here, we observed previously uncharacterized subtle but significant changes to learned song within a few days following deafening. Syllable structure became detectably noisier and silent intervals between song motifs increased. Although song motif sequences remained stable at 2 weeks, as previously reported, pronounced changes occurred in longer stretches of song bout sequences. These included deletions of syllables between song motifs, changes in the frequency at which specific chunks of song were produced and stuttering for birds that had some repetitions of syllables before deafening. Changes in syllable structure and song bout sequence occurred at different rates, indicating different mechanisms for their deterioration. The changes in syllable structure required an intact lateral part but not the medial part of the pallial-basal ganglia vocal pathway, whereas changes in the song bout sequence did not require lateral or medial portions of the pathway. These findings indicate that deafening-induced song changes in zebra finches can be detected rapidly after deafening, that acoustic and sequence changes can occur independently, and that, within this time period, the pallial-basal ganglia vocal pathway controls the acoustic structure changes but not the song bout sequence changes.
منابع مشابه
Deafening-induced vocal deterioration in adult songbirds is reversed by disrupting a basal ganglia-forebrain circuit.
Motor exploration can be an adaptive strategy when behavior fails to achieve an expected outcome. For example, like humans, adult songbirds change their vocal output when auditory feedback is altered or absent. Here, we show that the output of an anterior forebrain pathway (AFP) through the avian basal ganglia directly contributes to the expression of deafening-induced vocal changes in adulthoo...
متن کاملSong selectivity and sensorimotor signals in vocal learning and production.
Bird song, like human speech, is a learned vocal behavior that requires auditory feedback. Both as juveniles, while they learn to sing, and as adults, songbirds use auditory feedback to compare their own vocalizations with an internal model of a target song. Here we describe experiments that explore a role for the songbird anterior forebrain pathway (AFP), a basal ganglia-forebrain circuit, in ...
متن کاملThe pallial basal ganglia pathway modulates the behaviorally driven gene expression of the motor pathway.
The discrete neural network for songbird vocal communication provides an effective system to study neural mechanisms of learned motor behaviors in vertebrates. This system consists of two pathways--a vocal motor pathway used to produce learned vocalizations and a vocal pallial basal ganglia loop used to learn and modify the vocalizations. However, it is not clear how the loop exerts control ove...
متن کاملPostlearning consolidation of birdsong: stabilizing effects of age and anterior forebrain lesions.
Birdsong is a learned, sequenced motor skill. For the zebra finch, learned song normally remains unchanging beyond early adulthood. However, stable adult song will gradually deteriorate after deafening (Nordeen and Nordeen, 1992), indicating an ongoing influence of auditory feedback on learned song. This plasticity of adult song in response to deafening gradually declines with age (Lombardino a...
متن کاملAuditory-dependent vocal recovery in adult male zebra finches is facilitated by lesion of a forebrain pathway that includes the basal ganglia.
The integration of two neural pathways generates learned song in zebra finches. The vocal motor pathway (VMP) is a direct connection between HVC (proper name) and the robust nucleus of the arcopallium (RA), whereas the anterior forebrain pathway (AFP) comprises an indirect circuit from HVC to RA that traverses the basal ganglia. Partial ablation (microlesion) of HVC in adult birds alters the in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The European journal of neuroscience
دوره 28 12 شماره
صفحات -
تاریخ انتشار 2008